SOLUTION OF ALGEBRA-IV MID SEMESTRAL EXAM, 2011-12

Solution to problem 1

Let f be a field automorphism. First of all we prove that f restricted on \mathbb{Q} is identity. For that observe that

that implies that

which gives

Therefore it follows that

Now we prove that if $x \ge 0$ then $f(x) \ge 0$. For that we write

so we get that

Now take a sequence x_n that converges to 0. Then we have to prove that $f(x_n)$ converges to 0. For that we observe that by the Archimedian property of the real line and the fact that the sequence x_n goes to 0, we always get a sequence of integers a_n such that

 $\frac{1}{a_{m+1}} < x_n < \frac{1}{a_m}$

applying f we get that

so $f(x_n)$ goes to zero. Now since \mathbb{Q} is dense in \mathbb{R} . Given any $a \in \mathbb{R}$, we have a sequence of rational numbers x_n converging to a. Then we have by continuity of f that $f(x_n)$ tends to f(a). But $f(x_n) = x_n$, so by the uniqueness of limit we have

Hence we are done.

Solution to problem 2

The isomorphism extension theorem states that any isomorphism $\phi : E \to F$ can be extended uniquely to an algebraic extension E' of E to an algebraic extension F' of F.

The splitting field of $x^3 - 5$ is the finite extension of \mathbb{Q} generated by $\sqrt[3]{5}$ and ρ , where ρ is a primitive 3-rd root of unity. Since we can write this splitting field as $\mathbb{Q}(\sqrt[3]{5})(\sqrt[3]{5}\rho)$,

f(a) = a.

 $\frac{1}{a_{n+1}} < f(x_n) < \frac{1}{a_n}$

 $f(n.\frac{1}{n}) = f(1) = 1$

$nf(\frac{1}{n}) = 1$

$$f(\frac{1}{n}) = \frac{1}{n} \, .$$

$$f(\frac{m}{n}) = \frac{m}{n} \; .$$

$$x = (\sqrt{x})^2$$

$$x = (\mathbf{v} x)$$

 $f(x) = f(\sqrt{x})^2 > 0$.

which is a degree 6 extension of \mathbb{Q} . So there will be atmost 6 automorphism in 6, since the extension is Galois there will be exactly 6 automorphisms. Define

$$\sigma(\sqrt[3]{5}) = \rho\sqrt[3]{5}, \quad \sigma(\rho) = \rho$$

and

$$\tau(\sqrt[3]{5}) = \sqrt[3]{5}, \quad \tau(\rho) = \rho^2.$$

We can check that

$$\sigma^3 = id, \quad \tau^2 = id$$

and

$$\sigma\tau = \tau\sigma^2$$

So the Galois group is S_3 .

Solution to problem 3

a)Since K, L are finite Galois extensions of F. We can write $K = F(a_1, \dots, a_n)$ and $L = F(b_1, \dots, b_m)$. Then $KL = F(a_1, \dots, a_n, b_1, \dots, b_m)$ since a_i, b_j 's are roots of a minimal separable polynomial m_{a_i}, m_{b_j} 's we get that any element α in KL is the root of a separable polynomial in F[x]. Since K is the splitting field of $m'_{a_i}s$ and L is the splitting field of $m'_{b_j}s$ we get that KL is the splitting field of m_{a_i}, m_{b_j} 's.

b) Define the group homomorphism from Gal(KL/F) to $Gal(K/F) \times Gal(L/F)$ defined by

$$\sigma \mapsto (\sigma|_K, \sigma|_L)$$

It can be checked that the above map is a homomorphism. Suppose that

$$\sigma|_K = id, \quad \sigma|_L = id.$$

Then $\sigma = id$, this is because we write any element in KL as

$$\prod_i a_i^{n_i} \prod_j b_j^{m_j}$$

and σ acts identically on each of these factors. So the homomorphism is injective.

c) The image lies in the subgroup H of $Gal(K|F) \times Gal(L|F)$ given by

$$\{(\sigma,\tau)|\sigma|_{K\cap L}=\tau|_{K\cap L}\}$$
.

Since $(\sigma|_K)_{K\cap L} = \sigma|_{K\cap L} = (\sigma|_L)_{K\cap L}$, we have

$$Gal(KL|F) \subset H$$
.

We have to prove that they are equal. This is because $\sigma|_{K\cap L} = \tau|_{K\cap L}$. So write an element of KL as

$$\prod_{i} a_i^{n_i} \prod_{j} b_j^{m_j}$$

define

$$\sigma'(\prod_i a_i^{n_i} \prod_j b_j^{m_j}) = \prod_i \sigma(a_i)^{n_i} \prod_j \tau(b_j)^{m_j}$$

this is well defined because $\sigma|_{K\cap L} = \tau|_{K\cap L}$. Also we have $\sigma'|_{K} = \sigma$ and $\sigma'|_{L} = \tau$. So *H* is precisely the image.

d)Suppose that the group $Gal(KL|F) \cong Gal(K|F) \times Gal(L|F)$. Then we have to prove that $K \cap L = F$. That would mean that the group generated by Gal(K|F) and Gal(L|F) is Gal(KL|F). Since Gal(KL|F) is isomorphic to $Gal(K|F) \times Gal(L|F)$. We have $Gal(K|F) \cap Gal(L|F) = \{0\}$, so by the Galois correspondence we have $K \cap L = F$.

On the other hand suppose $K \cap L = F$. Then it follows that $Gal(KL|F) \cong Gal(K|F) \times Gal(L|F)$ by the Galois correspondence.

Solution of problem 4

K|F is a finite Galois extension. Let L be an intermediate subfield. Let H = Gal(K|L). Let N(H) be the normalizer of H in Gal(K|F). L_0 be the fixed field of N(H). We have to prove that L is Galois over L_0 , that is we have to prove that H is normal in N(H). But that is true by definition of N(H). Suppose that L|E is Galois. Then we have that H is contained in H_E , and H is normal in H_E , taht would mean that H_E is inside N(H). So we have $L_0 \subset E$.

Solution of problem 5

a) The derivative of
$$x^{p^n} - x$$
 is

$$p^n x^{p^n - 1} - 1 = -1$$

so the gcd of the polynomial $x^{p^n} - x$ with its derivative is 1. Therefore $x^{p^n} - x$ has no repeated roots.

 $\alpha^p = \alpha$

b) We have to prove that for all α such that

$$\alpha^{p^n} = \alpha \ .$$
$$(\alpha^p)^p = \alpha^{p^2} =$$

on the other hand

$$(\alpha^p)^p = \alpha$$

 $\alpha^{p^2} = \alpha$

so we get

so this way we get that

$$\alpha^{p^n} = \alpha \; .$$

c) Follows from the fact that

$$(\alpha + \beta)^{p^n} = \alpha^{p^n} + \beta^{p^n} = \alpha + \beta ,$$

and

$$(\alpha\beta)^{p^n} = \alpha^{p^n}\beta^{p^n} = \alpha\beta \ .$$

Therefore we get that

$$(\alpha^{-1})^{p^n} = (\alpha^{p^n})^{-1} = \alpha^{-1}$$

d) Since the polynomial $x^{p^n} - x$ has p^n roots we get that cardinality of \mathbb{F}_{p^n} is p^n . Since \mathbb{F}_{p^n} over \mathbb{F}_p is Galois and the Galois group has order n we have that the degree of extension of \mathbb{F}_{p^n} over \mathbb{F}_p is n.

Solution to problem 6

Let K|F is a separable extension of degree p^2 . Now degree of the minimal polynomial is equal to the degree of the extension K = F(a) over F which is p^2 . K contains more than p roots of the minimal polynomial $m_a(x)$, which is of degree p^2 . Now m_a has p^2 distinct roots. Consider the splitting field L of $m_a(x)$, since $m_a(x)$ is separable we have that the splitting field of $m_a(x)$ is Galois and therefore $[L:F] = |Aut(L|F)| = p^2$, since we have p^2 many distinct roots. Since |Aut(K|F)| divides the order of Aut(L|F) and K contains more than p roots of the minimal polynomial we have that Aut(K|F) = Aut(L|F), whence we get that L = K. So K is the splitting field of $m_a(x)$. So K|F is normal. Therefore it is Galois and hence its Galois group is of order p^2 . Since any group of order p^2 is abelian, we have only two possibilities \mathbb{Z}_{p^2} and $\mathbb{Z}_p \times \mathbb{Z}_p$.