
SOLUTION OF ALGEBRA-IV MID SEMESTRAL EXAM, 2011-12

Solution to problem 1

Let f be a field automorphism. First of all we prove that f restricted on Q is identity.

For that observe that

f(n.
1

n
) = f(1) = 1

that implies that

nf(
1

n
) = 1

which gives

f(
1

n
) =

1

n
.

Therefore it follows that

f(
m

n
) =

m

n
.

Now we prove that if x ≥ 0 then f(x) ≥ 0. For that we write

x = (
√
x)2

so we get that

f(x) = f(
√
x)2 ≥ 0 .

Now take a sequence xn that converges to 0. Then we have to prove that f(xn) converges

to 0. For that we observe that by the Archimedian property of the real line and the fact

that the sequence xn goes to 0, we always get a sequence of integers an such that

1

an+1

< xn <
1

an

applying f we get that
1

an+1

< f(xn) <
1

an
so f(xn) goes to zero. Now since Q is dense in R. Given any a ∈ R, we have a sequence of

rational numbers xn converging to a. Then we have by continuity of f that f(xn) tends

to f(a). But f(xn) = xn, so by the uniqueness of limit we have

f(a) = a .

Hence we are done.

Solution to problem 2

The isomorphism extension theorem states that any isomorphism φ : E → F can be

extended uniquely to an algebraic extension E ′ of E to an algebraic extension F ′ of F .

The splitting field of x3 − 5 is the finite extension of Q generated by 3
√

5 and ρ, where ρ

is a primitive 3-rd root of unity. Since we can write this splitting field as Q( 3
√

5)( 3
√

5ρ),
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which is a degree 6 extension of Q. So there will be atmost 6 automorphism in 6, since

the extension is Galois there will be exactly 6 automorphisms. Define

σ(
3
√

5) = ρ
3
√

5, σ(ρ) = ρ

and

τ(
3
√

5) =
3
√

5, τ(ρ) = ρ2 .

We can check that

σ3 = id, τ 2 = id

and

στ = τσ2 .

So the Galois group is S3.

Solution to problem 3

a)Since K,L are finite Galois extensions of F . We can write K = F (a1, · · · , an) and

L = F (b1, · · · , bm). Then KL = F (a1, · · · , an, b1, · · · , bm) since ai, bj’s are roots of a

minimal separable polynomial mai ,mbj ’s we get that any element α in KL is the root of a

separable polynomial in F [x]. Since K is the splitting field of m′ais and L is the splitting

field of m′bjs we get that KL is the splitting field of mai ,mbj ’s.

b)Define the group homomorphism from Gal(KL/F ) to Gal(K/F ) × Gal(L/F ) defined

by

σ 7→ (σ|K , σ|L) .

It can be checked that the above map is a homomorphism. Suppose that

σ|K = id, σ|L = id .

Then σ = id, this is because we write any element in KL as∏
i

ani
i

∏
j

b
mj

j

and σ acts identically on each of these factors. So the homomorphism is injective.

c)The image lies in the subgroup H of Gal(K|F )×Gal(L|F ) given by

{(σ, τ)|σ|K∩L = τ |K∩L} .

Since (σ|K)K∩L = σ|K∩L = (σ|L)K∩L, we have

Gal(KL|F ) ⊂ H .

We have to prove that they are equal. This is because σ|K∩L = τ |K∩L. So write an

element of KL as ∏
i

ani
i

∏
j

b
mj

j

define

σ′(
∏
i

ani
i

∏
j

b
mj

j ) =
∏
i

σ(ai)
ni

∏
j

τ(bj)
mj
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this is well defined because σ|K∩L = τ |K∩L. Also we have σ′|K = σ and σ′|L = τ . So H is

precisely the image.

d)Suppose that the group Gal(KL|F ) ∼= Gal(K|F )×Gal(L|F ). Then we have to prove

that K ∩L = F . That would mean that the group generated by Gal(K|F ) and Gal(L|F )

is Gal(KL|F ). Since Gal(KL|F ) is isomorphic to Gal(K|F ) × Gal(L|F ). We have

Gal(K|F ) ∩Gal(L|F ) = {0}, so by the Galois correspondence we have K ∩ L = F .

On the other hand suppose K ∩ L = F . Then it follows that Gal(KL|F ) ∼= Gal(K|F )×
Gal(L|F ) by the Galois correspondence.

Solution of problem 4

K|F is a finite Galois extension. Let L be an intermediate subfield. Let H = Gal(K|L).

Let N(H) be the normalizer of H in Gal(K|F ). L0 be the fixed field of N(H). We have

to prove that L is Galois over L0, that is we have to prove that H is normal in N(H).

But that is true by definition of N(H). Suppose that L|E is Galois. Then we have that

H is contained in HE, and H is normal in HE, taht would mean that HE is inside N(H).

So we have L0 ⊂ E.

Solution of problem 5

a) The derivative of xp
n − x is

pnxp
n−1 − 1 = −1

so the gcd of the polynomial xp
n − x with its derivative is 1. Therefore xp

n − x has no

repeated roots.

b)We have to prove that for all α such that

αp = α

we have

αpn = α .

(αp)p = αp2 =

on the other hand

(αp)p = α

so we get

αp2 = α

so this way we get that

αpn = α .

c) Follows from the fact that

(α + β)p
n

= αpn + βpn = α + β ,

and

(αβ)p
n

= αpnβpn = αβ .
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Therefore we get that

(α−1)p
n

= (αpn)−1 = α−1 .

d) Since the polynomial xp
n−x has pn roots we get that cardinality of Fpn is pn. Since Fpn

over Fp is Galois and the Galois group has order n we have that the degree of extension

of Fpn over Fp is n.

Solution to problem 6

Let K|F is a separable extension of degree p2. Now degree of the minimal polynomial is

equal to the degree of the extension K = F (a) over F which is p2. K contains more than

p roots of the minimal polynomial ma(x), which is of degree p2. Now ma has p2 distinct

roots. Consider the splitting field L of ma(x), since ma(x) is separable we have that the

splitting field of ma(x) is Galois and therefore [L : F ] = |Aut(L|F )| = p2, since we have

p2 many distinct roots. Since |Aut(K|F )| divides the order of Aut(L|F ) and K contains

more than p roots of the minimal polynomial we have that Aut(K|F ) = Aut(L|F ), whence

we get that L = K. So K is the splitting field of ma(x). So K|F is normal. Therefore it

is Galois and hence its Galois group is of order p2. Since any group of order p2 is abelian,

we have only two possibilities Zp2 and Zp × Zp.
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